
A parallel algorithm for the enumeration of self-avoiding polygons on the square lattice

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2003 J. Phys. A: Math. Gen. 36 5731

(http://iopscience.iop.org/0305-4470/36/21/304)

Download details:

IP Address: 171.66.16.103

The article was downloaded on 02/06/2010 at 15:33

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/36/21
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience

INSTITUTE OF PHYSICS PUBLISHING JOURNAL OF PHYSICS A: MATHEMATICAL AND GENERAL

J. Phys. A: Math. Gen. 36 (2003) 5731–5745 PII: S0305-4470(03)58841-2

A parallel algorithm for the enumeration of
self-avoiding polygons on the square lattice

Iwan Jensen

Department of Mathematics and Statistics, The University of Melbourne, Vic. 3010, Australia

Received 24 January 2003, in final form 21 March 2003
Published 13 May 2003
Online at stacks.iop.org/JPhysA/36/5731

Abstract
We have developed a parallel algorithm that allows us to enumerate the number
of self-avoiding polygons on the square lattice to perimeter length 110. We
have also extended the series for the first 10 area-weighted moments and
the radius of gyration to 100. Analysis of the resulting series yields very
accurate estimates of the connective constant µ = 2.638 158 530 31(3) (biased)
and the critical exponent α = 0.500 000 1(2) (unbiased). In addition, we obtain
very accurate estimates for the leading amplitudes confirming to a high degree
of accuracy various predictions for universal amplitude combinations.

PACS numbers: 05.50.+q, 02.10.Hh, 05.40.Fb

1. Introduction

A self-avoiding polygon (SAP) on a lattice can be defined as a walk along the edges of the
lattice which starts and ends at the origin but has no other self-intersections. Alternatively, we
can define a SAP as a connected subgraph with vertices of degree 2 only. Generally, SAPs
are considered distinct up to a translation, so if there are pn SAPs of length n there are 2npn

walks (the factor of two arising since the walk can go in two directions). The enumeration of
self-avoiding polygons on various lattices is an interesting combinatorial problem in its own
right, and is also of considerable importance in the statistical mechanics of lattice models [15].
When enumerated by perimeter SAPs can be considered a model for ring polymers, and when
enumerated by area they model vesicles [10, 11, 21].

The basic problems are the calculation of the number pn of polygons of perimeter n, the
number am of polygons of area m, or more generally the number pm,n of polygons of area m
and perimeter n. Note that on the square lattice polygons have an even perimeter and pn = 0
for n odd. Here we are interested in area-weighted moments, where the kth area-weighted
moment is 〈ak〉n = (∑

m mkpm,n

)/
pn. Also of great interest is the mean-square radius of

The series for the generating functions studied in this paper can be obtained via e-mail by sending a request
to I.Jensen@ms.unimelb.edu.au or via the world wide web on the URL http://www.ms.unimelb.edu.au/˜iwan/ by
following the instructions.

0305-4470/03/215731+15$30.00 © 2003 IOP Publishing Ltd Printed in the UK 5731

http://stacks.iop.org/ja/36/5731

5732 I Jensen

gyration 〈R2〉n, which measures the typical size of a polygon with perimeter n. These quantities
are expected to behave as

pn = Bµnnα−3[1 + o(1)]

〈ak〉n = E(k)n2kν[1 + o(1)]

〈R2〉n = Dn2ν [1 + o(1)]

(1)

where µ is the so-called connective constant, while α and ν are critical exponents. When
analysing the data, it is often convenient to use the associated generating functions

R2
g(u) =

∑
n

n2pn〈R2〉nun =
∑

n

rnu
n ∼ R(u)(1 − uµ)−(α+2ν) (2)

P (k)(u) =
∑

n

pn〈ak〉nun =
∑

n

a(k)
n un ∼ A(k)(u)(1 − uµ)2−(α+2kν) (3)

where the various factors are chosen so that rn and a(k)
n are integers. These series are thus

expected to have a singularity at the critical point uc = 1/µ with critical exponents as
mentioned above. In particular, we note that the critical exponent of the perimeter generating
function, P(u) = P (0)(u), is 2 − α.

Despite strenuous effort over the past 50 years or so, this problem has not been solved
on any regular two-dimensional lattice. However, for the hexagonal lattice the critical point
u2

c = 1/(2 +
√

2), as well as the critical exponents α = 1/2 and ν = 3/4 are known exactly
[25], though non-rigorously. Very firm evidence exists from previous numerical work that the
exponent α is universal and thus equals 1/2 for all two-dimensional lattices [9, 13, 17, 24].
The value of ν and its universality have also been confirmed by numerical work [8, 13, 16,
24, 26].

It is also known [2] that the amplitude combination E(1)/D is universal, and that

BD = 5

32π2
σa0 (4)

where a0 is the area per site, and σ is an integer such that pn is non-zero only if n is divisible
by σ . For the square lattice a0 = 1 and σ = 2. These predictions have been confirmed
numerically [2, 16, 22–24].

Recently, Richard et al [27] found, subject to a very reasonable conjecture, the exact
scaling function for self-avoiding polygons. This in turn led to the derivation of universal
amplitude combinations for all the E(k), namely that E(k)Bk−1 are known universal constants.
In particular, it has been shown that E(1) = 1/4π [1]. These predictions were strongly
supported by numerical evidence [27].

Some years ago [3] it was pointed out that since the hexagonal lattice connective constant
is given by the zero of a quadratic in u2, it is possible that this might be the case also for
the square lattice connective constant. It was found that 581u4 + 7u2 − 13 was the only
polynomial with ‘small’ integer coefficients consistent with the estimate for uc. The relevant
zero of the polynomial is u2

c = 0.143 680 629 269 8685 In [18] the numerical evidence
was in complete agreement with this value, but with four more significant digits than when
the original suggestion was made. While it should be emphasized that there is no theoretical
basis for the conjecture, the agreement with the numerical estimate is, however, sufficiently
impressive (and perhaps surprising) to warrant further investigation.

This paper builds on the work of Enting [6] who enumerated square lattice polygons to 38
steps using the finite lattice method. Using the same technique this enumeration was extended
by Enting and Guttmann to 46 steps [7] and later to 56 steps [13], and further extended to

A parallel algorithm for the enumeration of self-avoiding polygons on the square lattice 5733

70 steps in unpublished work. These extensions to the enumeration were largely made possible
by improved computer technology. Jensen and Guttmann [18] improved the algorithm and
extended the enumeration to 90 steps while using essentially the same computational resources
used to obtain polygons to 70 steps. The work by Guttmann and Enting [13] also included
calculations of moments of the caliper size distribution. Hiley and Sykes [14] obtained the
number of square lattice polygons by both area and perimeter up to perimeter 18. Enting and
Guttmann extended the calculation to perimeter 42 [8]. The radius of gyration was calculated
for SAPs up to 28 steps by Privman and Rudnick [26]. Jensen [16] extended the series for
area-moments with k � 2 and the radius of gyration to 82 steps. In [27] the calculation for
area-moments was extended to k � 10.

The main purpose of this paper is to report on a new parallel version of our earlier
algorithms which allows us to significantly extend the series and use these extended series to
critically examine the theoretical predictions given above. Using the parallelized algorithm
and a new superior memory management, inspired by Knuth’s work on the enumeration of
polyominoes [20], we have been able to extend the enumeration of square lattice polygons to
110 steps. We extend the series for area-weighted moments with k � 10 and the radius of
gyration to 100 steps.

In the next section we will very briefly review the finite lattice method for enumerating
square lattice polygons and give some details of the improved parallel algorithm. The results
of the analysis of the series are presented in section 3 including a discussion of the conjecture
for the exact critical point and numerical tests of the predictions for universal amplitude
combinations.

2. Enumeration of polygons

The algorithm used to enumerate SAPs on the square lattice is an enhancement of the finite-
lattice method devised by Enting [6] in his pioneering work, which contains a detailed
description of the original approach. A major enhancement, resulting in an exponentially
more efficient algorithm, is described in some detail in [18], while details of the changes
required to enumerate area-moments and the radius of gyration can be found in [16]. In the
following we shall briefly outline those parts of the method required to understand how the
parallel version works.

2.1. The transfer matrix algorithm

The first terms in the series for the polygon generating function can be calculated using
transfer matrix techniques to count the number of polygons in rectangles W vertices wide and
L vertices long. Due to the symmetry of the square lattice one need only consider rectangles
with L � W . In the original application [6] valid polygons were required to span the enclosing
rectangle in the lengthwise direction. Clearly, polygons which are narrower than the width of
the rectangle are counted many times. It is, however, easy to obtain the polygons of width
exactly W and length exactly L from this enumeration [6]. Any polygon spanning such a
rectangle has a perimeter of length at least 2(W + L)− 4. By adding the contributions from all
rectangles of width W � Wmax (where the choice of Wmax depends on available computational
resources) and length W � L � 2Wmax − W + 1, with contributions from rectangles with
L > W counted twice, the number of polygons per vertex of an infinite lattice is obtained
correctly up to perimeter Nmax = 4Wmax − 2.

The transfer matrix technique involves drawing a boundary line through the rectangle
intersecting a set of up to W + 1 edges. Polygons in a given rectangle are enumerated by

5734 I Jensen

Figure 1. A snapshot of the boundary line (dashed line) during the transfer matrix calculation on
the square lattice. Polygons are enumerated by successive moves of the kink in the boundary line,
as exemplified by the position given by the dotted line, so that one vertex at a time is added to
the rectangle. To the left of the boundary line we have drawn an example of a partially completed
polygon.

moving the boundary line so as to add one vertex at a time, as shown in figure 1. In this fashion
we build up the rectangle column-by-column with each column built up vertex-by-vertex. As
we move the boundary line, it intersects partially completed polygons consisting of disjoint
loops that must all be connected to form a single polygon. For each configuration of the
occupied or empty edges along the intersection, we maintain a (perimeter) generating function
for open loops to the left of the line cutting the intersection in that particular pattern. The
updating of the generating functions depends primarily on the configuration of the two edges
at the kink in the boundary line prior to the move (we shall refer to these edges as the kink
edges). As the boundary line is moved, the two new edges intersected by the boundary line
can be either empty or occupied.

To avoid situations leading to graphs with more than a single component, we have to
forbid a loop to close on itself if the boundary line intersects any other loops. So two loop
ends can only be joined if they belong to different loops or all other edges are empty. To
exclude loops which close on themselves, we need to label the occupied edges in such a way
that we can easily determine whether or not the two loop ends belong to the same loop. The
most obvious choice would be to give each loop a unique label. However, on two-dimensional
lattices there is a more compact scheme relying on the fact that two loops can never intertwine.
Each end of a loop is assigned one of two labels depending on whether it is the lower end or
the upper end of a loop. Each configuration along the boundary line can thus be represented
by a set of edge states {σi}, where

σi =

0 empty edge
1 lower end of a loop
2 upper end of a loop.

(5)

Configurations are read from the bottom to the top. The configuration along the intersection
of the partially completed polygon in figure 1 is {0112122} before the move, where we use
over-lining to indicate the kink edges, and {0110022} after the move. It is easy to see that
this encoding uniquely describes which loop ends are connected. In order to find the upper
loop end, matching a given lower end, we start at the lower end and work upwards in the
configuration counting the number of ‘1’s and ‘2’s we pass (the ‘1’ of the initial lower end
is not included in the count). We stop when the number of ‘2’s exceeds the number of ‘1’s.
This ‘2’ marks the matching upper end of the loop. Ignoring the ‘0’s, the ‘1’s and ‘2’s can

A parallel algorithm for the enumeration of self-avoiding polygons on the square lattice 5735

Figure 2. Snapshots of the boundary line (dashed line) during the TM calculation. Shown is a
situation with four nested loops (left panel) where the lower ends of two loops are joined (middle
panel) resulting in a situation with three nested loops (right panel) and a relabelling of the loop
ends.

be viewed as perfectly balanced parenthesis. Those familiar with algebraic languages will
recognize that each configuration of the labelled loop ends forms a Motzkin word [5]. It
is known that the number of Motzkin words of length m grows like 3m. This means that
the number of configurations and thus the computational complexity of the FLM calculation
grows like 3Nmax/4.

The rules for updating the partial generating functions as the intersection is moved are
identical to the original work, so we refer the interested reader to [6] for further details
regarding this aspect of the transfer-matrix calculation. The only important aspect we wish
to emphasize here is that when joining two loop ends at the kink, we may have to change
the labelling of a corresponding loop end elsewhere in the resulting new configuration. An
example is shown in figure 2. In this case we start out with four nested loops corresponding
to the configuration {1011012222}, then upon moving the kink in the boundary line the lower
loop ends of the second and third loops are joined leading to the configuration {1011012222}.
After the next move we see that there are now three differently nested loops and the upper end
of the second loop (prior to the moves) have become the lower end of the third loop (after the
moves) resulting in the final configuration {1000012122}.

The major improvement to the original method as explained in [18] is that we require
valid polygons to span the rectangle in both directions. In other words, we directly enumerate
polygons of width exactly W and length L rather than polygons of width �W and length
L as was done originally. At a first glance this would appear to be inefficient since for
many boundary-line configurations, we now have to keep four distinct generating functions
depending on which borders have been touched. However, as demonstrated in practice
[18] it actually leads to an algorithm which is both exponentially faster and whose memory
requirement is exponentially smaller. Experimentally it was found that the computational
complexity was close to 2Nmax/4, much better than the 3Nmax/4 of the original approach.
Realizing the full savings in time and memory usage requires enhancements to the original
algorithm. The most important is what we call pruning. This procedure, details of which
are given in [18], allows us to discard most of the possible configurations for large W

because they only contribute to polygons of length greater than Nmax. Briefly this works
as follows. Firstly, for each configuration we keep track of the current minimum number
of steps Ncur, already inserted to the left of the boundary line to build up that particular
configuration. Secondly, we calculate the minimum number of additional steps Nadd required

5736 I Jensen

to produce a valid polygon. There are three contributions, namely the number of steps
required to close the polygon, the number of steps needed (if any) to ensure that the polygon
touches both the lower and upper borders and finally the number of steps needed (if any)
to extend at least W edges in the lengthwise direction (remember we only need rectangles
with L � W). If the sum Ncur + Nadd > Nmax, we can discard the partial generating
function for that configuration, and of course the configuration itself, because it would
not make a contribution to the polygon count up to the perimeter lengths we are trying to
obtain.

Inspired by Knuth’s algorithm for the enumeration of polyominoes [20], we implemented
a couple of further enhancements to our SAP algorithm. The first improvement is a superior
memory management. A given boundary line configuration does not contribute until order
N = Ncur + Nadd, so we need only retain the first (Nmax − N)/2 terms in the associated
generating function, the factor of 2 arising since every other term is identically 0. In our case
the maximum in memory consumption occurred at W = 24, where there are approximately
8.1×108 distinct configurations and a total of about 2.1×109 non-zero terms in the generating
functions. So on average there is only about 2.5 non-zero terms per configuration. The
second improvement uses a further symmetry of the square lattice. When a column has been
completed the configuration is symmetric under reflection. That is the generating functions
for the configurations such as, {010122000} and {000112020}, are identical. This symmetry
also extends to the touching of the upper/lower borders of the rectangle.

The generalization of the algorithm to calculations of area-weighted moments and the
radius of gyration is described in [16]. Note that the additional symmetry mentioned above
does not extend to the radius of gyration calculation.

2.2. Parallelization

The computational complexity of the FLM grows exponentially with the number of terms
one wishes to calculate. It is therefore little wonder that implementations of the algorithms
have always been geared towards using the most powerful computers available. In the past
decade or so parallel computing has become the paradigm for high-performance computing.
The early machines were largely dedicated MPP machines which more recently have been
superceded by clusters.

The transfer-matrix algorithms used in the calculations of the finite lattice contributions
are eminently suited for parallel computations.

The most basic concerns in any efficient parallel algorithm is to minimize the
communication between processors, and ensure that each processor does the same amount
of work and uses the same amount of memory. In practice, one naturally has to strike some
compromise and accept a certain degree of variation across the processors.

One of the main ways of achieving a good parallel algorithm using data decomposition
is to try to find an invariant under the operation of the updating rules. That is we seek to
find some property about the configurations along the boundary line which does not alter in
a single iteration. The algorithm for the enumeration of polygons is quite complicated since
not all possible configurations occur due to pruning, and an update at a given set of edges
might change the state of an edge far removed, for example, when two lower loop ends are
joined we have to relabel one of the associated upper loop ends as a lower loop end in the new
configuration (see figure 2). However, there is still an invariant, since any edge not directly
involved in the update cannot change from being empty to being occupied and vice versa. That
is only the kink edges can change their occupation status. This invariant allows us to parallelize
the algorithm in such a way that we can do the calculation completely independently on each

A parallel algorithm for the enumeration of self-avoiding polygons on the square lattice 5737

processor with just two redistributions of the dataset each time an extra column is added to
the lattice.

The main points of the algorithm are summarized below.

1. With the boundary line straight (having no kinks) distribute the data across processors so
that configurations with the same occupation pattern along the lower half of the boundary
line are placed on the same processor.

2. Do the TM update inserting the top-half of a new column. This can be done independently
by each processor because the occupation pattern in the lower half remains unchanged.

3. Upon reaching the half-way mark, redistribute the data so that configurations with the
same occupation pattern along the upper half of the boundary line are placed on the same
processor.

4. Do the TM update inserting the bottom-half of a new column.
5. Go back to 1.

The redistribution among processors is done as follows:

1. On each processor run through the configurations to establish the configuration pattern
c of each configuration and calculate, n(c), the number of configurations with a given
pattern.

2. On processor 0 calculate the global sum of n(c).
3. Sort the global sum n(c) on processor 0.
4. On processor 0 assign each pattern to a processor p(c) such that:

(a) Set pid = 0.
(b) Assign the most frequent unassigned pattern c to processor pid.
(c) If the number of configurations assigned to pid is less than the number of

configurations assigned to processor 0, then assign the least frequent unassigned
patterns to pid until the desired inequality is achieved.

(d) Set pid = (pid + 1) mod Np, where Np is the number of processors.
(e) Repeat from (b) until all patterns have been assigned.

5. Send p(c) to all processors.
6. On each processor run through the configurations sending each configuration to its

assigned processor.

The bulk of the calculations were performed on the facilities of the Australian Partnership
for Advanced Computing (APAC). The APAC facility is a Compaq server cluster with
125 ES45’s each with four 1 Ghz chips for a total of 500 processors in the compute partition.
The cluster has a total peak speed over 1Tflop. Each server node has at least 4 Gb of memory.
Nodes are interconnected by a fat-tree low latency (MPI < 5 us), high bandwidth (250 Mb s−1

bidirectional) Quadrics network.
In table 1 we have listed the time and memory use of the algorithm for Nmax = 98 at

W = 22, using from 1 to 64 processors. The memory use of the single processor job was
about 3 Gb. As can be seen the algorithm scales perfectly from 1 to 64 processors, since the
total combined CPU time (column 2, format is hours:minutes) used by all processors stays
almost constant. Likewise, the elapsed time (column 3, format is hours:minutes:seconds),
which is the running time of the program, is halved when the number of processors is doubled.
We expect that the rather surprising drop in CPU time at 32 or 64 processors is caused by
better single processor optimization by the compiler. One would, for example, expect that
the average time taken to fetch elements from main memory drops as the memory size on
each individual processor drops from 3 Gb for the computation using a single processor to
just under 50 Mb for the 64 processor computation. Another main issue in parallel computing

5738 I Jensen

Table 1. CPU time and memory use for the parallel algorithm for enumerating polygons of
maximal perimeter 98 at width 22.

Proc. CPU time Elapsed time Max conf Min conf Max term Min term

1 33:26 33:34:30 94 858 092 202 124 719
2 34:58 17:31:09 45 332 715 45 312 242 99 729 074 99 050 619
4 34:15 8:35:57 22 762 665 22 667 218 51 880 015 51 263 646
8 34:03 4:16:51 11 692 292 11 525 456 26 498 730 26 097 260

16 34:16 2:09:40 5 880 705 5 707 628 13 523 912 13 037 482
32 33:15 1:03:04 2 941 787 2 821 055 6 934 653 6 451 282
64 32:29 31:07 1 489 116 1 398 768 3 519 013 3 222 199

is that of load balancing, that is, we wish to ensure to the greatest possible extent that the
workload is shared equally among all the processors. This aspect is examined via the numbers
in columns 4–7. At any given time during the calculation each processor handles a subset
of the total number of configurations. For each processor we monitor the maximal number
of configurations and terms retained in the generating functions. The load balancing can be
roughly gauged by looking at the largest (Max Conf) and smallest (Min Conf) maximal number
of configurations handled by individual processors during the execution of the program. In
columns 6 and 7 are listed the largest (Max Term) and smallest (Min Term) number of terms
retained in the generating functions associated with the subset of configurations. As can be
seen the algorithm is quite well balanced. Even with 64 processors, where each processor uses
only about 50 Mb of memory, the difference between the processor handling the maximal and
minimal number of configurations is less than 10%. The same holds true for the total number
of terms retained in the generating functions.

A simple timing of the various subroutines of the parallel algorithm shows that the typical
time to do a redistribution is the same as the average time taken per iteration to move the kink
once. Since the maximal time use at Nmax = 110 occurs at W = 24, there are 24 iterations
and just 2 redistributions per added column, so the overall cost of parallel execution is smaller
than 10%.

2.3. Further details

Finally a few remarks of a more technical nature. The number of contributing configurations
becomes very sparse in the total set of possible states along the boundary line, and as is
standard in such cases one uses a hash-addressing scheme. Since the integer coefficients
occurring in the series expansion become very large, the calculation was performed using
modular arithmetic [19]. This involves performing the calculation modulo various integers
pi and then reconstructing the full integer coefficients at the end. The pi are called moduli
and must be chosen so they are mutually prime, for example, none of the pi has a common
divisor. The Chinese remainder theorem ensures that any integer has a unique representation
in terms of residues. If the largest absolute values occurring in the final expansion is m, then
we have to use a number of moduli k such that p1p2 · · ·pk/2 > m. Since we are using a
heavily loaded shared facility, the CPU time was more of an immediate limitation than memory
and, secondly, more memory was used for the data required to specify the configuration and
manage the storage than to store the actual terms of the generating functions. So we used the
moduli p0 = 262, p1 = 262 − 1 and p2 = 262 − 3, which allowed us to represent pn correctly
using these three moduli. The calculation of the area-weighted moments and the radius of
gyration requires a lot more memory for the generating functions (plus the radius of gyration

A parallel algorithm for the enumeration of self-avoiding polygons on the square lattice 5739

Table 2. The number, pn, of embeddings of n-step polygons on the square lattice. Only non-zero
terms are listed.

n pn

92 3959 306 049 439 766 117 380 237 943 449 096
94 26 117 050 944 268 596 220 897 591 868 398 452
96 172 472 018 113 289 556 124 895 798 382 016 316
98 1140 203 722 938 033 441 542 255 979 068 861 816

100 7545 649 677 448 506 970 646 886 033 356 862 162
102 49 985 425 311 177 130 573 540 712 929 060 556 804
104 331 440 783 010 043 009 106 782 321 492 277 936 522
106 2199 725 502 650 970 871 182 263 620 080 571 090 156
108 14 612 216 410 979 678 692 651 320 184 958 285 074 180
110 97 148 177 367 657 853 074 723 038 687 712 338 567 772

calculation involves multiplication with quite large integers), so in this case we used prime
numbers of the form 230 − ri for the moduli pi . Up to 6 primes were needed to represent the
coefficients correctly.

Combining all the memory minimization tricks mentioned above allows us to extend the
series for the square lattice polygon generating function from 90 terms to 110 terms using at
most 36 Gb of memory. The calculations requiring the most resource were at widths 23–25.
These cases were done using 40 processors and took about 8–10 h each per prime. The total
CPU time required was about 1500 h per prime. Obviously the calculation for each width
and prime is totally independent and several calculations can be done simultaneously. A
similar total amount of resources was required to calculate the area-moments and the radius
of gyration.

In table 2 we have listed the new terms obtained in this work for the number of polygons
with perimeter 92–110. The number of polygons of length �56 can be found in [13], while
those up to length 90 are listed in [18].

3. Analysis of the series

To obtain the singularity structure of the generating functions we used the numerical method of
differential approximants [12]. Since all odd terms in the series are zero and the first non-zero
term is p4, we actually analysed the function P(u) = ∑

n p2n+4u
n, and so on. These functions

have critical points at u = u2
c with the same exponents as those of (2). Our main objective is

to obtain very accurate estimates for the connective constant µ and the critical exponents α

and ν. In particular, we test a conjecture [3] for the exact value of the connective constant and
confirm to a very high degree of precision the exact values of the exponents.

Once the exact values of the exponents have been confirmed, we will turn our attention to
the ‘fine structure’ of the asymptotic form of the coefficients. In particular, we are interested
in obtaining accurate estimates for the amplitudes B,D and E(k). We do this by fitting the
coefficients to the assumed form (1). In this case our main aim is to test the validity of the
predictions for the amplitude combinations mentioned in introduction.

3.1. The polygon generating function

In table 3 we have listed estimates for the critical point u2
c and exponent 2 − α of the series

for the square lattice SAP generating function. The estimates were obtained by averaging

5740 I Jensen

..10 ..20 ..30 ..40 ..50 ..60 ..70 ..80 ..90

1.4999999

1.5000000

1.5000001

1.5000002

..10 ..20 ..30 ..40 ..50 ..60 ..70 ..80 ..90

1.4999999

1.5000000

1.5000001

1.5000002

Figure 3. Estimates for the critical exponent 2 − α versus estimates for the critical point u2
c of the

square lattice polygon generating function. Each tick label along the x-axis is preceded by the value
0.143 680 6292. The straight lines correspond to 2−α = 3/2 and u2

c = 0.143 680 629 269 8685

Table 3. Estimates for the critical point u2
c and exponent 2 − α obtained from second and third

order differential approximants to the series for square lattice polygon generating function. L is
the order of the inhomogeneous polynomial.

Second order DA Third order DA

L u2
c 2 − α u2

c 2 − α

0 0.143 680 629 242(28) 1.500 000 116(94) 0.143 680 629 246(22) 1.500 000 105(73)
2 0.143 680 629 245(15) 1.500 000 111(63) 0.143 680 629 247(21) 1.500 000 097(81)
4 0.143 680 629 246(16) 1.500 000 107(62) 0.143 680 629 251(22) 1.500 000 080(99)
6 0.143 680 629 250(17) 1.500 000 094(65) 0.143 680 629 244(22) 1.500 000 109(72)
8 0.143 680 629 249(22) 1.500 000 094(72) 0.143 680 629 249(28) 1.500 000 09(14)

10 0.143 680 629 248(19) 1.500 000 095(66) 0.143 680 629 252(28) 1.500 000 06(15)
12 0.143 680 629 246(21) 1.500 000 105(70) 0.143 680 629 247(18) 1.500 000 100(70)
14 0.143 680 629 242(20) 1.500 000 116(66) 0.143 680 629 245(26) 1.500 000 099(99)
16 0.143 680 629 252(18) 1.500 000 086(63) 0.143 680 629 247(25) 1.500 000 097(94)
18 0.143 680 629 254(15) 1.500 000 076(65) 0.143 680 629 247(22) 1.500 000 098(81)
20 0.143 680 629 238(26) 1.500 000 122(74) 0.143 680 629 242(23) 1.500 000 113(87)

values obtained from second and third order differential approximants. For each order L of
the inhomogeneous polynomial we averaged over those approximants to the series which used
at least the first 45 terms of the series (that is, polygons of perimeter at least 90). The error
quoted for these estimates reflects the spread (basically one standard deviation) among the
approximants. Note that these error bounds should not be viewed as a measure of the true
error as they cannot include possible systematic sources of error. Based on these estimates we
conclude that u2

c = 0.143 680 629 25(5) and α = 0.500 0001(2). This analysis adds strongly
to the already very convincing evidence that the critical exponent α = 1/2 exactly.

If we take the conjecture α = 1/2 to be true, we can obtain a refined estimate for the
critical point u2

c enabling us to check whether or not the estimates for u2
c still agree with

the root of the polynomial. In figure 3 we have plotted estimates for the critical exponent
2 − α against estimates for the critical point u2

c . Each dot in the left (right) panel of this
figure represents a pair of estimates obtained from a second (third) order inhomogeneous

A parallel algorithm for the enumeration of self-avoiding polygons on the square lattice 5741

Table 4. Estimates for the critical point u2
c and exponents −(α + 2ν) and 2 − (α + 2ν) obtained

from second (top-half) and third (bottom-half) order differential approximants to the series for the
radius of gyration and first area-weighted moment of square lattice SAP.

Series: R2
g(u) P(1)(u)

L u2
c 2 − α u2

c 2 − α

0 0.143 680 5865(92) −1.999 681(36) 0.143 680 6053(50) 0.000 122(15)
2 0.143 680 592(10) −1.999 704(43) 0.143 680 609(10) 0.000 143(60)
4 0.143 680 5889(82) −1.999 689(35) 0.143 680 609(11) 0.000 139(50)
6 0.143 680 583(23) −1.999 676(82) 0.143 680 604(12) 0.000 07(16)
8 0.143 680 588(10) −1.999 680(55) 0.143 680 608(10) 0.000 10(10)

10 0.143 680 591(12) −1.999 703(59) 0.143 680 616(22) −0.000 11(79)

0 0.143 680 6081(85) −1.999 822(53) 0.143 680 607(12) 0.000 21(28)
2 0.143 680 605(13) −1.999 803(79) 0.143 680 616(11) 0.000 11(12)
4 0.143 680 6074(92) −1.999 812(61) 0.143 680 6143(73) 0.000 108(42)
6 0.143 680 606(11) −1.999 817(71) 0.143 680 6166(64) 0.000 095(26)
8 0.143 680 6057(93) −1.999 809(53) 0.143 680 6148(45) 0.000 083(40)

10 0.143 680 606(11) −1.999 817(61) 0.143 680 6154(55) 0.000 099(21)

differential approximant. The order of the inhomogeneous polynomial was varied from 0 to
10. As can be seen the estimates for the critical exponent cross the line 2 − α = 3/2 at a
value u2

c � 0.143 680 629 273, which is slightly larger than the value obtained from the root
of the polynomial suggested as possibly providing the exact value. So this is the first direct
evidence that the suggestion could be wrong. Since the difference only occurs in the 12th
significant digit, we do not feel confident that the numerical evidence alone is sufficient to
settle the matter. It may be the case that there are subtle systematic trends in the estimates,
which preclude them from having converged to the true values of the parameters. However,
as emphasized in [18] the other zero of the polynomial is at u2

c = −0.155 7288 . . . , and as
was the case in this previous analysis, we see no evidence of such a singularity, which casts
serious doubt on the validity of the suggestion. Particularly, since we are not aware of any
arguments as to why we might not expect to see the singularity on the negative real axis from
our series analysis. Ultimately, we will let the reader make their own judgment.

Based on this analysis we adopt the value u2
c = 0.143 680 629 273(3), and thus

µ = 2.638 158 530 31(3) as our final estimates.

3.2. The radius of gyration and area-weighted moments

Table 4 contains estimates for u2
c and the critical exponents of the generating functions (2)

for the radius of gyration and first area-weighted moment. Suffice to say, the estimates of the
exponents are in agreement with the conjectured exact value ν = 3/4.

3.3. The amplitudes

The asymptotic form of the coefficients pn of the polygon generating function has been studied
in detail previously [4, 18]. As argued in [4] there is no sign of non-analytic corrections-to-
scaling exponents to the polygon generating function, and one, therefore, finds that

pn = µnn−5/2
∑
i�0

ai/ni. (6)

This form was confirmed with great accuracy in [18]. Estimates for the leading amplitude
B = a0 can thus be obtained by fitting pn to the form given in equation (6) using increasing

5742 I Jensen

0 0.005 0.01 0.015 0.02

1/n

0.56230125

0.56230130

0.56230135

0.56230140

0.56230145

B

6
8
10
12

Figure 4. Estimates for the amplitude B versus 1/n. Each dataset is obtained by fitting pn to the
form (6) using from 6 to 12 correction terms.

values of k. As in [16] we find it useful to check the behaviour of the estimates by plotting the
results for the leading amplitude versus 1/n (see figure 4), where pn is the last term used in the
fitting, and n is varied from 110 down to 50. We again note that as more and more correction
terms are added to the fits, the estimates exhibit less curvature and that the slope becomes less
steep. This is very strong evidence that (6) indeed is the correct asymptotic form of pn. We
estimate that B = 0.562 301 30(2).

The asymptotic form of the coefficients rn in the generating function for the radius of
gyration was studied in [16]. When fitting to a form similar to equation (6), assuming that there
are only analytic corrections-to-scaling, we found that the amplitudes of higher order terms
are very large and that the leading amplitude converge rather slowly. This indicates that this
asymptotic form is incorrect. We found that the coefficients fit better if we assume a leading
non-analytic correction-to-scaling exponent � = 3/2. This result confirms the prediction of
Nienhuis [25]. Note that since the polygon generating function exponent 2 − α = 3/2, a
correction-to-scaling exponent � = 3/2 is perfectly consistent with the asymptotic form (6).
Because 2 − α + � is an integer, the non-analytic correction term becomes part of the analytic
background term [4]. We thus proposed the following asymptotic form:

rn = µnn

[
BD +

∑
i�0

ai/ni/2

]
. (7)

Alternatively, we could fit to the form

rn/pn = n7/2

[
D + n5/2

∑
i�0

ai/ni/2

]
. (8)

In figure 5 we show the leading amplitudes resulting from such fits while using from 6 to
12 terms in these expansions. Also shown in these figures (solid lines) are the predicted exact
value of BD, given in equation 4, and the prediction for D using the estimate for B obtained
above. As can be seen the leading amplitudes clearly converge towards their expected values,
and from these plots we can conclude that the prediction for BD has been confirmed to at least
5 digit accuracy. Assuming that equation (4) is exact and using the very accurate estimate for
B, we find that D = 0.056 309 437(2).

A parallel algorithm for the enumeration of self-avoiding polygons on the square lattice 5743

0 0.005 0.01 0.015 0.02

1/n

0.031662

0.031663

0.031664

0.031665

0.031666

0.031667

BD

6
8
10
12

0 0.005 0.01 0.015 0.02

1/n

0.056308

0.056310

0.056312

0.056314

0.056316

0.056318

D

6
8
10
12

Figure 5. Estimates for the amplitudes BD and D versus 1/n. Each dataset is obtained by fitting
rn to the form (7) and rn/pn to the form (8) while using from 6 to 12 correction terms.

Table 5. Exact values and estimates from square lattice polygons for the universal amplitude
combinations.

Amplitude Exact value Estimate

E1 0.795 774 715 . . . × 10−1 0.795 773(2) × 10−1

E2B 0.335 953 483 . . . × 10−2 0.335 952(2) × 10−2

E3B
2 0.100 253 732 . . . × 10−3 0.100 253(1) × 10−3

E4B
3 0.237 553 411 . . . × 10−5 0.237 552(2) × 10−5

E5B
4 0.475 738 345 . . . × 10−7 0.475 736(3) × 10−7

E6B
5 0.836 630 215 . . . × 10−9 0.836 624(5) × 10−9

E7B
6 0.132 514 776 . . . × 10−10 0.132 514(2) × 10−10

E8B
7 0.192 419 637 . . . × 10−12 0.192 418(2) × 10−12

E9B
8 0.259 465 635 . . . × 10−14 0.259 464(2) × 10−14

E10B
9 0.328 063 262 . . . × 10−16 0.328 062(4) × 10−16

Next we test the predictions [27] for the amplitude combinations of the area-weighted
moments:

E2kB
2k−1 = − c2k

4π3k

(3k − 2)!

(6k − 3)!
E2k+1B

2k = c2k+1

(3k)!π3k+126k+2
(9)

for k ∈ N, where we used the known result that E1 = 1/4π [1] and the amplitudes Ek are
related to the amplitudes E(k) in equation (1) by Ek = E(k)/k!. The numbers ck are given by
the recursion

cn + (3n − 4)cn−1 +
1

2

n−1∑
r=1

cn−r cr = 0 c0 = 1. (10)

The first few values are c1 = 1, c2 = −5/2, c3 = 15, c4 = −1105/8, c5 =
1695, c6 = −414 125/16, c7 = 472 200, c8 = −1282 031 525/128, c9 = 242 183 775, c10 =
−1683 480 621 875/256.

We fit the coefficients to the form

a(k)
n ≈ k!µnn(α+2kν)−3

[
Ek +

∑
i�0

ai/n1+i/2

]
. (11)

5744 I Jensen

We obtain several datasets by varying the number of terms used in this formula from 8 to 12.
To obtain the final estimates we do a simple linear regression on the data for the amplitudes
as a function of 1/n extrapolating to 1/n → 0. We estimate the error on the amplitude
estimate from the spread among the different datasets. In this way, we obtain the results for
the amplitude combinations listed in table 5.

It is clear that the results for the first 10 area-weighted moments are in excellent agreement
with the numerical estimates. On this basis we conclude that the conjectured scaling function
and derived exact amplitude combinations [27] are correct.

4. Conclusion

We have presented an improved and parallel algorithm for the enumeration of self-avoiding
polygons on the square lattice. This algorithm has enabled us to obtain polygons up to
perimeter length 110 and their radius of gyration and area-weighted moments up to perimeter
100. Our extended series enables us to give an extremely precise estimate of the connective
constant µ = 2.638 158 530 31(3). This estimate provides the first direct evidence that an
earlier conjecture for the exact value of µ could be incorrect. We confirmed to a very high
degree of accuracy the predicted exponent values α = 1/2 and ν = 3/4. We also obtained very
accurate estimates for the leading amplitude B = 0.562 301 30(2) of the asymptotic expansion
of pn, and confirmed the correctness of theoretical predictions for the values of the amplitude
combinations BD and E(k)Bk−1.

Acknowledgments

The calculations presented in this paper would not have been possible without a generous
grant of computer time on the server cluster of the Australian Partnership for Advanced
Computing (APAC). We also used the computational resources of the Victorian Partnership
for Advanced Computing (VPAC). We gratefully acknowledge financial support from the
Australian Research Council.

References

[1] Cardy J L 1994 Mean area of self-avoiding loops Phys. Rev. Lett. 72 1580–3
[2] Cardy J L and Guttmann A J 1993 Universal amplitude combinations for self-avoiding walks, polygons and

trails J. Phys. A: Math. Gen. 26 2485–94
[3] Conway A R, Enting I G and Guttmann A J 1993 Algebraic techniques for enumerating self-avoiding walks on

the square lattice J. Phys. A: Math. Gen. 26 1519–34
[4] Conway A R and Guttmann A J 1996 Square lattice self-avoiding walks and corrections to scaling Phys. Rev.

Lett. 77 5284–7
[5] Delest M P and Viennot G 1984 Algebraic languages and polyominoes enumeration Theor. Comput. Sci. 34

169–206
[6] Enting I G 1980 Generating functions for enumerating self-avoiding rings on the square lattice J. Phys. A: Math.

Gen. 13 3713–22
[7] Enting I G and Guttmann A J 1985 Self-avoiding polygons on the square, L and Manhattan lattices J. Phys. A:

Math. Gen. 18 1007–17
[8] Enting I G and Guttmann A J 1990 On the area of square lattice polygons J. Stat. Phys. 58 475–84
[9] Enting I G and Guttmann A J 1992 Self-avoiding rings on the triangular lattice J. Phys. A: Math. Gen. 25

2791–807
[10] Fisher M E 1989 Fractal and nonfractal shapes in two-dimensional vesicles Physica D 38 112–8
[11] Fisher M E, Guttmann A J and Whittington S G 1991 Two-dimensional lattice vesicles and polygons J. Phys.

A: Math. Gen. 24 3095–106

A parallel algorithm for the enumeration of self-avoiding polygons on the square lattice 5745

[12] Guttmann A J 1989 Asymptotic analysis of power-series expansions in Phase Transitions and Critical
Phenomena vol 13 ed C Domb and J L Lebowitz (New York: Academic) pp 1–234

[13] Guttmann A J and Enting I G 1988 The size and number of rings on the square lattice J. Phys. A: Math. Gen.
21 L165–L172

[14] Hiley B J and Sykes M F 1961 Probability of initial ring close in the restricted random-walk model of a
macromolecule J. Chem. Phys. 34 1531–7

[15] Hughes B D 1995 Random Walks and Random Environments, Vol I Random Walks (Oxford: Clarendon)
[16] Jensen I 2000 Size and area of square lattice polygons J. Phys. A: Math. Gen. 33 3533–43
[17] Jensen I and Guttmann A J 1998 Self-avoiding walks, neighbour-avoiding walks and trails on semiregular

lattices J. Phys. A: Math. Gen. 30 8137–45
[18] Jensen I and Guttmann A J 1999 Self-avoiding polygons on the square lattice J. Phys. A: Math. Gen. 32 4867–76
[19] Knuth D E 1969 Seminumerical Algorithms. The Art of Computer Programming vol 2 (Reading, MA:

Addison-Wesley)
[20] Knuth D E 2001 Polynum and Polyslave the program is available from Knuth’s Home-page at

http://Sunburn.Stanford.EDU/˜knuth/programs.html#polyominoes
[21] Leibler S, Singh R R P and Fisher M E 1987 Thermodynamic behavior of two-dimensional vesicles Phys. Rev.

Lett. 59 1989–92
[22] Lin K Y 2000 Universal amplitude combinations for self-avoiding walks and polygons on the honeycomb lattice

Physica A 275 197–206
[23] Lin K Y and Kao Y M 1999 Universal amplitude combinations for self-avoiding walks and polygons on directed

lattices J. Phys. A: Math. Gen. 32 6927–38
[24] Lin K Y and Lue S J 1999 Universal amplitude combinations for self-avoiding polygons on the kagome lattice

Physica A 270 453–61
[25] Nienhuis B 1982 Exact critical point and critical exponents of O(n) models in two dimensions Phys. Rev. Lett.

49 1062–5
[26] Privman V and Rudnick J 1985 Size of rings in two dimensions J. Phys. A: Math. Gen. 18 L789–L793
[27] Richard C, Guttmann A J and Jensen I 2001 Scaling function and universal amplitude combinations for

self-avoiding polygons J. Phys. A: Math. Gen. 34 L495–L501

